OACC Symposium

Storytelling with data:

Advanced graphing techniques including best practices in infographics and data visualization

November 14, 2014

Gregory M Stoup
gstoup@4cd.edu
Sr. Dean Contra Costa Community College District
Vice President, RP Group of California

Presentation overview

Part I 1. Why story telling?
10:45-11:35
2. Why visuals?
3. Story-based messaging through visuals
4. More than a few examples

Part II
12:40-1:30
5. Guidelines for building an effective visual
6. Designing visuals for greatest impact
7. Walking through the process

The power of story

Data and facts will motivate only a small minority of people to act

Our brains are hard wired to seek out narrative
"Story telling is mankind's single most powerful communication vehicle ... humans are primates that tell stories"
-Stephen J. Gould

Jettison the bad advice from the past

We've been told: Redundancy is the key...
"Tell them what you're going to tell them, tell them, and then tell them what you just told them."
"The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information"

- cognitive psychologist George A. Miller

Actually this is good advice when your giving people a bunch of boring facts that they don't care about

A better approach: walk them through an engaging story

The problem with facts

- The backfire phenomenon
- When exposed to facts that conflict with an individual's closely held beliefs, the introduction of conflicting data actually reinforces the preexisting beliefs.
- A compelling story has a greater likelihood of triggering thoughtful reflection than data alone

THE CHRONICLE
 I
 of Higher Education

November 4, 2010

It's Not How Much Student Data You Have, but How You Use It

By Sara Lipka

Student-assessment reports feature tables, charts, and shining examples of data in action. According to this year's National Survey of Student Engagement, released on Thursday, the University of Nevada at Las Vegas had seen low marks for advising, so it opened an academicsuccess center. South Dakota's public colleges, worried about weak measures of "active and collaborative learning," had made plans for all students to get tablet PC's, and for faculty members to integrate them into coursework.

Reporting findings vs messaging

- Getting people to reflect and ultimately act on your data means getting a lot of things right.
- Today we will not be focusing on visuals as tools to further the research investigation.
- We will be looking at visual tools to help convey ideas and stimulate reflection.
"We are moving past the traditional practice of reporting findings to thinking about how we craft effective messages \& build compelling stories"

First, let's identify a common language

Standard SAS output for the T-Test Procedure men Fo"the outsider, suresearchers Lower CL Upper CL Lower CL Upper CL

Because researchers fully appreciate the complexities and subtle nuances of their research they are often tempted to linger there.

Write	Pooled	Equal	198	-3.73	0.0002
Write	Satterthwaite	Unequal	170	-3.66	0.0003

The wrong format can create dissonance between your message and your audience.

Variable	Method	Num DF	Den DF	F Value	Pr > F
Write	Folded F	90	108	1.61	0.0187

Presentation overview

1. Why story telling?
2. Why visuals?
3. Story-based messaging through visuals
4. More than a few examples
5. Guidelines for building an effective visual
6. Designing visuals for greatest impact
7. Walking through the process

How your brain divvies up tasks

Successful Visualizations

- Are less about effectively conveying complex information than creatively provoking human interaction/thinking
- Create situational awareness and contexts that otherwise were abstract or didn't exist
- Serve as compelling invitations to interact both with the material and with others

Elegance may not be enough

Eye-pleasing visuals, while enjoyable to look at, can fail to communicate a clear message ...

Visuals that work

- All good visuals, whether they contain data or not, tell a story
- It may be a supporting story to a larger narrative, but a good visual is itself a stand-alone story
- We are looking to create a memorable summary of a compelling story

Presentation overview

1. Why story telling?
2. Why visuals?
3. Story-based messaging through visuals
4. More than a few examples
5. Guidelines for building an effective visual
6. Designing visuals for greatest impact
7. Walking through the process

This will be our reference visual for much of the day

Given 100 students starting in Pre-Algebra, how many will reach transfer level math?
Short Sequence

Math 811
100

Pass \% = 58.6\%

ELEMENTARY ALGEBRA
Math 110

Pass \% = 35.8\%

INTERMEDIATE ALGEBRA
Math 120

Pass \% = 55.0\%

Long Sequence

The art of storytelling

Freytag's Pyramid
Climax

Exposition

Freytag's Pyramid illustrated: Short vs Long Sequences

Freytag's Pyramid
Shorter is better than longer

We have 2 Basic Skills which is better tracks: one short, one long

Developing messages that stick

People tend to have highest levels of message engagement \& retention when the story is:

1. Simple

- Can be easily summarize in a sentence.

2. Unexpected - Provides viewers a drama they want to retell
3. Concrete -has few abstractions
4. Plausible - passes the sniff test
5. Emotional - speaks to things humans care about
6. Simple - When it comes to course sequences, shorter is better than longer
7. Unexpected - wow, shorter is a lot better than longer (and shorter kinda sucks)
8. Concrete - it's about students trying to complete a course sequence
9. Plausible - more courses means more work, more time and so fewer finish
10. Emotional - we are losing so many student

Presentation overview

1. Why story telling?
2. Why visuals?
3. Story-based messaging through visuals
4. More than a few examples
5. Guidelines for building an effective visual
6. Designing visuals for greatest impact
7. Walking through the process

Examples: story \#1

How should we think about

$$
\begin{gathered}
\text { equity with regards to } \\
\text { student success? }
\end{gathered}
$$

100\% Success by Cohort
95\% Scenario \#1: Rising Tide
90

75\% 70\% 65 60\% 55% Rising Tide Scenario emerges from $\begin{aligned} & \text { Ring. } \\ & \text { interventions that help all groups equally. }\end{aligned}$

Overall Average 77\%

Progress Summary
Overall Success:
Achievement Gap:

- African-American
- Asian / Pac. Is.
- Filipino
- Latino
- White

Other

100\% $T \quad$ Success by Cohort

Progress Summary
Overall Success:
Achievement Gap:

Base	Outcome
Year	Year

What does this tell us?

1. The Bottom-up and Win-Win scenarios are the only ones that get you higher completion and close the equity gap
2. How should we frame the challenge:

First completion then equity
We can work to raise the college completion rate and then try to make it more equitable

First equity and we get completion
We can pursue the equity outcome we want (Bottom-up or Win-Win) with the consequence being higher college completion rates

Are we properly aligning and integrating our strategies?

Some evidence that we may not be:

- Roughly 85% of colleges experiencing increases in overall completing rates did so at the cost of a widening of the achievement gap.
- Of the colleges that experienced some degree of reduction in their achievement gap, 82% of them did so by decreasing the top performing group.

 EQUITY COMPLETION professional development

Our dominant strategies often operate in separate orbits

Growing FTES

How do we increase our high school capture rates \& student persistence?

Improving Completion

How do we get more students through the completion pipeline?

Closing the achievement gap

Reframing the challenge can help

 bring about better alignmentWhat FTES and completion strategies support the equity outcomes we are pursuing? (e.g. bottom-up or win-win)

Examples: story \#2

A strategy for closing the equity gap

An approach for closing the equity gap

- Date for a California Community College
- Breaking down the data
- Prepared vs unprepared students
- Student ethnicity, gender, age group

Distribution of DVC completion rates for unprepared student populations (sorted from lowest to highest completion rates)

We can estimate the magnitude of change

Distribution of completion rates for unprepared student populations (sorted from lowest to highest completion rates)

A possible college strategy for the Placement Prep Program

30\% 0\%

Scenario \#2:

If we move the same number of students (35) from the unprepared average to the prepared average we get a 17 percentage point improvement in overall completions for Hispanic students

10

Another possible college strategy for the Puente Program

Overall Average

College
Preparedness

Gender \& Age
Demographics

Examples: story \#3

With all this data at our
fingertips, why aren't we seeing more gains?

Let's call out the irony

Over the last two decades evidence on student performance has become increasingly available and yet the pace of change has remained slow.
Why?

With all this data why are we still struggling?

1. Focusing on the wrong data
2. Using a one-size-fits-all framework

Are we looking at the right data?

Not a one-size fits-all world.

Prepared students
 Full-time students

First-time students
At-risk students

Traditional students
Returning students

Degree-seeking students Continuing students
Transfer students English language learners
Career/tech students
Lifelong learners
Basic skills students
Dual enrolled high
school students

Examples: story \#4

Board of Trustees Review of Student Success Data

Completion Pathway

Completion

30 Units
Persistence

Basic Skills Remediation
English
47.8\%
43.6\%

Math
ESL
33.7\%
30.6\%
17.5\%
27.1\%

CTE Completion

So how many Contra Costa District students are we counting?

Total District
Headcount

First-time
Students

Number of first-time students with a minimum of 6 units earned who attempted any Math or English in the first three years

- 35\% of First-time students

Students in the Scorecard Starting Cohort

How long do we count?

Each cohort is given six years to complete. We add up all those competing each year to get the total number completing for the cohort and use that to calculate the completion rate

The Scorecard provides a six year completion rate

| 2007/08
 Starting
 Cohort | 2008/09 | 2009/10 2010/11 | 2011/12 | 2012/13 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | --------- | Number completing each year | ------- | Total Number
 that Completed
 in Six Years |

Five Year Trend in Overall Completion Rates

Five Year Trend in Overall Completion Rates

The colleges differ in the percentage of students that arrive college ready

```
                                    LOS MEDANOS 

\section*{Prepared vs unprepared}


\section*{Completion Rates for Prepared Students}


\section*{Completion Rates for Prepared Students}


Prepared Completion Rates for all 112 California Community Colleges
```

LOS MEDANOS CONTRA COSTA DIABLO VALLEY

65.8	70.5	77.3

```

\section*{Completion Rates for Unprepared Students}




\section*{Completion Rates for Unprepared Students}


Unprepared Completion Rates for all 112 California Community Colleges
\begin{tabular}{ccc} 
CONTRA COSTA & LOS MEDANOS & DIABLO VALLEY \\
37.0 & 37.8 & 48.4
\end{tabular}
40.0
45.0
50.0
55.0

\section*{Defining the unprepared}

\section*{Completion Pathway}

\section*{Unprepared students}

\section*{Basic Skills course work}

\section*{Prepared students}

College level course work

Basic Skills Sequence
\begin{tabular}{c|c|c|c}
\hline 4 Levels & 3 Levels & 2 Levels & 1 Level \\
Below & Below & Below & Below
\end{tabular}

The percent of students attempting any course in the basic skills sequence

\author{
Transfer Level
}

Who then pass the transfer (or degree applicable) course in the same discipline within 6 years

\section*{Scorecard: Basic Skills Remediation rate}

Basic Skills English Sequence
\begin{tabular}{c|c|c|}
\hline \begin{tabular}{c}
3 Levels \\
Below
\end{tabular} & \begin{tabular}{c}
2 Levels \\
Below
\end{tabular} & \begin{tabular}{c}
1 Level \\
Below
\end{tabular}
\end{tabular}

\section*{Transfer \\ Level English}

Math Sequence
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
4 Levels \\
Below
\end{tabular} & \begin{tabular}{c}
3 Levels \\
Below
\end{tabular} & \begin{tabular}{c}
2 Levels \\
Below
\end{tabular} \\
\hline
\end{tabular} \begin{tabular}{cc}
\begin{tabular}{c}
1 Level \\
Below
\end{tabular} & or
\end{tabular} \begin{tabular}{c} 
Transfer \\
Level Math
\end{tabular}

ESL Sequence
\begin{tabular}{|ccc|c|c|c|c|}
\hline \begin{tabular}{c}
6 Levels \\
Below
\end{tabular} & \begin{tabular}{c}
5 Levels \\
Below
\end{tabular} & \begin{tabular}{c}
4 Levels \\
Below
\end{tabular} & \begin{tabular}{c}
3 Levels \\
Below
\end{tabular} & \begin{tabular}{c}
2 Levels \\
Below
\end{tabular} & \(\square\) & \begin{tabular}{c}
1 Level \\
Below
\end{tabular} \\
\begin{tabular}{c} 
College \\
Level
\end{tabular} & \begin{tabular}{c} 
Transfer \\
Level English
\end{tabular} \\
\hline
\end{tabular}

\section*{Five Year Trend in Remedial English Improvement Rates}


\section*{Five Year Trend in Remedial English Improvement Rates}


Remedial English Improvement Rates for all 112 California Community Colleges

CONTRA COSTA
29.7

LOS MEDANOS
40.2

DIABLO VALLEY
58.0

Final thoughts

Yours, not mine ;)

Any comments, reactions?


\section*{OACC Symposium}

\title{
It has been a pleasure
}

November 14, 2014

Gregory M Stoup
gstoup@4cd.edu
Sr. Dean Contra Costa Community College District Vice President, RP Group of California

\section*{OACC Symposium}

\title{
Storytelling with data part II: Advanced graphing Workshop
}

November 14, 2011
Gregory M. Stoup
Vice President, Research \& Planning Group of California Senior Dean, Contra Costa Community College District

\section*{Presentation overview}

Part I 1. Why story telling?
10:45-11:35
2. Why visuals?
3. Story-based messaging through visuals
4. More than a few examples

Part II
12:40-1:30
5. Guidelines for building an effective visual
6. Designing visuals for greatest impact
7. Walking through the process

\section*{Presentation overview}
1. Why story telling?
2. Why visuals?
3. Story-based messaging through visuals
4. More than a few examples
5. Guidelines for building an effective visual
6. Designing visuals for greatest impact
7. Walking through the process

\section*{Reporting findings vs messaging}

\section*{"We are moving past the} traditional practice of reporting findings to thinking about how we craft effective messages \& build compelling stories"
"Tell them what you're going to tell them, tell them, and then tell them what you just told them."
"The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information"
- cognitive psychologist George A. Miller

A better approach: walk them through an engaging story

\section*{Keeping it simple}

\section*{Message retention rates for presentations:}

\section*{\# of Take Aways}

1 message
2 messages
3 messages

\section*{Retention Rate after 1 hour}

90\%
65\% Old marketing adage:
20\%
"When you say 3 things you say nothing"

\section*{Choose the right textual expression}

\section*{Statements regarding equivalent quantities tend to be interpreted in different ways}

Which do people feel is smaller?

Which is viewed as greater?

Which do more people remember?
25 percent
or


Doubling current size

Which is felt more negatively?

\section*{Take advantage of thinking patterns}

Research in cognitive psychology has revealed that much of our initial perception of a graph takes place in the first 0.5 seconds.

How do we choose a graph that reinforces rather than impedes these first impressions?

\section*{Some guidelines on graph selection......}

\section*{Cognitive tendencies and graph selection}

Vertical Bar Graph


Orange is larger

Horizontal Bar Graph


Initial Impressions
Dynamic

\section*{Cognitive tendencies and graph selection}

Vertical Bar Graph


Two populations, more females than males

Pie Chart


A single population composed of more females

Initial Impressions

\section*{Cognitive tendencies and graph selection}

Line Graph


Something is improving

Bar Chart


Something is getting bigger

The first slice of your pie should correlate with your primary message


Give it a high color contrast
ratio relative to the rest of pie
Make it brightly colored if it is correlated with a positive or uplifting message; a duller color if negative or a challenge

Contrast any associated text (font size and bold lettering)


\section*{Some details \& specifics}

If its' a bar chart, have the last bar highlight your primary message

Soften the color of the axis lines


\section*{More details}

To reduce eye movement, don't use a chart legend unless the chart labels create a muddled composition

And have the text color match the bar / pie slice


\section*{Presentation overview}
1. Why story telling?
2. Why visuals?
3. Story-based messaging through visuals
4. More than a few examples
5. Guidelines for building an effective visual
6. Designing visuals for greatest impact
7. Walking through the process

\section*{Four components of effective visuals}
- What is the explicit objective of this piece of work?
- What will that get you?
- And what will that get you?

\section*{Purpose}
- Is this piece of work compelling?
- Does it build awareness?
- Does it call people to act?
- What is its tone?
- What is the validity of this piece of work based on?
- Who will see it as credible and why?
- How might its substantiation be challenged?

For our purposes there are two options at each corner that will guide our development of a visual
- A call to action
or
- Raifeuppopeness about an issue
- The moral imperative or Story
- We can make a difference story

- HigReseatrch your findings
or
- Validation required

\section*{Back to our four corner model}

Informs choice of color
schemes for the visual

The flow and sequencing of elements in the visual


How much text \& data to include and choice of language

\section*{Purpose: color sequencing}

\section*{Bright to dull sequencing}

\section*{Unacceptable outcome/call to action}

Dull to bright sequencing

A success story/something worth trying

\section*{Audience: how much too explain}

\section*{Pedestrian Audience}
- Simplify. Show only what's absolutely needed
- Raw numbers trump percentages
- One left-to-right pathway pointing to one outcome

\section*{Audience of Experts}
- Can tolerate more process \& visual nuance
- Often require proof in your visual that you understand complexities
- If complex, highlight each "chapter" in the visual narrative

\section*{Research: how much validation}

Continuum: how much you have to show/explain
\begin{tabular}{cc} 
Low & High \\
Validation \\
needs & Validation \\
needs
\end{tabular}

Will tolerate more explanatory text
and even more data

\section*{Larger Text} Bold Lettering everyday vernacular

Use softer color and smaller fonts to not distract from the main story

Prefer formal names of processes and structures

\section*{Story: flow and endpoint} The success story


The visual flow should be left to right and/or bottom up

Story: flow and endpoint


\section*{This will be our reference visual for applying \& testing each guideline}

\section*{Short Sequence}


ELEMENTARY ALGEBRA
Math 110

Pass \% = 35.8\%


INTERMEDIATE ALGEBRA

TRANSFER LEVEL

Math 120


Pass \% = 55.0\%

\section*{Long Sequence}


\section*{The individual elements of the visual narrative}

The color scheme reflects the tone, sequencing with the plot, from brighter colors to darker ones
\begin{tabular}{c}
\begin{tabular}{c} 
PRE- \\
ALGEBR
\end{tabular} \\
Math 811 \\
\hline 100 \\
\hline
\end{tabular}

Pass \% = 58.6\%

ELEMENTARY ALGEBRA
Math 110


Pass \% = 35.8\%

INTERMEDIATE ALGEBRA
Math 120
21
Pass \% = 55.0\%

\section*{TRANSFER}

LEVEL

Informational text of interest to the informed viewer has been softened as not to distract from the primary story of interest to the broader audience
Math 811
100

Pass \% = 58.6\%


Pass \% = 37.9\%


\section*{The individual elements of the visual narrative}

Given 100 students starting in Pre-Algebra, how many will reach transfer level math?
An attention-grabbing outcome


\section*{Using layers to add depth to the story}
\(1^{\text {st }}\) Layer - orient the viewer to the environment
\(2^{\text {nd }}\) Layer - orient the viewer to the primary players
\(3^{\text {rd }}\) Layer - explain the relative positioning of players
\(4^{\text {th }}\) Layer - give the players action / assign an outcome
\(5^{\text {th }}\) Layer - here endeth the lesson

\title{
College Retention Rate by category
}
(Academic Year 2013/14)
```

Units Attempted in First Term

```

```

Part-time (< 6 units)

```
```Part-time (6-11.5 units)
\(\square\) Full-time (12+ Units)
```



Student Age
$\square 18$ \& 19 Yrs. Old
$\square$ 20-24 Yrs. Old
25-29 Yrs. Old $\square$ 30 - 39 Yrs Old
40+ Yrs Old


## Student Ethnicity



Student Segments
Fall 2013
Headcount



Dual Enrolled ESL $\square$ Basic Skills Career/Tech

Transfer

Persistence Rate (Fall 2013 - Spring 2014)




Choices that improve retention

Research in cognitive science has revealed certain relationships between information and levels of cognitive processing.


Audience Retention \& Engagement

Results from an experiment on the impacts of display type on data interpretation and retention.

The Design

- Randomly select three groups of equal size with roughly equal representation from faculty and administrators.
- Each group was shown identical data on algebra course sequence completion.
- Each group received identical narration but given the data in one of three output designs
- Each group was given two minutes to discuss the data
- Participants were surveyed on what they remembered and took away from the information presented to them.


## Research Investigation

## Exhibit A

## Percent of Students Successfully Completing the Algebra Sequence within 2 to 5 Years

Initial Course Placement	$\mathbf{2}$ Years	$\mathbf{3}$ Years	$\mathbf{4}$ Years	$\mathbf{5}$ Years
Pre-Algebra	$\mathbf{2 . 3 \%}$	$\mathbf{3 . 6 \%}$	$\mathbf{5 . 4 \%}$	$\mathbf{6 . 1 \%}$
Elementary Algebra	$\mathbf{1 5 . 5 \%}$	$\mathbf{1 9 . 1 \%}$	$\mathbf{2 0 . 6 \%}$	$\mathbf{2 2 . 4 \%}$
Math 110	$19.1 \%$	$21.9 \%$	$23.2 \%$	$23.7 \%$
Math 111	$11.8 \%$	$16.2 \%$	$17.9 \%$	$19.1 \%$
Intermediate Algebra	$43.4 \%$	$47.6 \%$	$49.2 \%$	$\mathbf{4 9 . 2 \%}$
Math 120	$57.0 \%$	$58.8 \%$	$59.6 \%$	$59.6 \%$
Math 122	$29.7 \%$	$36.4 \%$	$38.7 \%$	$38.7 \%$

## Research Investigation

## Exhibit B

Percent of Students Successfully Completing the Algebra Sequence within 2 to 5 Years

Initial Course Placement	$\mathbf{2}$ Years	$\mathbf{3}$ Years	$\mathbf{4}$ Years	$\mathbf{5}$ Years
Pre-Algebra	$\mathbf{2 . 3 \%}$	$\mathbf{3 . 6 \%}$	$\mathbf{5 . 4 \%}$	$\mathbf{6 . 1 \%}$
Elementary Algebra	$\mathbf{1 5 . 5 \%}$	$\mathbf{1 9 . 1 \%}$	$\mathbf{2 0 . 6 \%}$	$\mathbf{2 2 . 4 \%}$
Math 110	$19.1 \%$	$21.9 \%$	$23.2 \%$	$23.7 \%$
Math 111	$11.8 \%$	$16.2 \%$	$17.9 \%$	$19.1 \%$
Intermediate Algebra	$43.4 \%$	$47.6 \%$	$49.2 \%$	$49.2 \%$
Math 120	$57.0 \%$	$58.8 \%$	$59.6 \%$	$59.6 \%$
Math 122	$29.7 \%$	$36.4 \%$	$38.7 \%$	$38.7 \%$

## Research Investigation

## Exhibit C

Percent of Students Successfully Completing the Algebra Sequence within 2 to 5 years.


## Salient Findings

## Exhibit A

## Black \& White Table

Average retention of independent facts

## Exhibit B

## Color Coded <br> Table

More comparisons made across groups

## Exhibit C

## Color Table w/ <br> Graphic

More comparisons made across groups and across time

We need to improve initial placements \& investigate other related issues

Solution was tied to acquiring more resources \& more innovation at the college

## Presentation overview

1. Why story telling?
2. Why visuals?
3. Story-based messaging through visuals
4. More than a few examples
5. Guidelines for building an effective visual
6. Designing visuals for greatest impact
7. Walking through the process

## How do you get there?

- This is a trial that nearly always begins with a struggle.
- You will produce multiple bad drafts before you brute force your way to a good one
- Start with paper and pen


## Don't fear the ugly first draft



## Don't fear the ugly first draft



Growing FTES


Improving Completion

How do we get more students through the completion pipeline?

Closing the achievement gap


Reframing the challenge can help bring about better alignment

What FTES and completion strategies support the equity outcomes we are pursuing? (e.g. bottom-up or win-win)

## A source of inspiration \& guidance

## Back of the Napkin <br> by <br> Dan Roam



## Presentation overview

## Some

examples

The questions we ask convey how we see the world

How do we increase the college completion rate?

# The questions we ask convey how we see the world 

How do we get more students through the completion pipeline?



# The questions we ask convey how we see the world 

What programs do we have to increase student completion?


# The questions we ask convey how we see the world 

What helps students
reach completion?


The questions we ask convey how we see the world

What is the student experience?


## Tracking student progress through the basic skills sequence to identify interventions

3 Levels<br>Below<br>Transfer<br>1,000

2 Levels   Below   Transfer	1 Level   Below   Transfer
650	$\mathbf{4 7 5}$   $-35 \%$


Transfer   Level
400
$-16 \%$



## Tracking student progress through the basic skills sequence to identify interventions

3 Levels
Below
Transfer
:---:


2 Levels   Below   Transfer
650
$-35 \%$


1 Level   Below   Transfer	Transfer   Level
$\mathbf{4 7 5}$	
$-27 \%$	400



## Inquiry framed toward action

What to do when you reach the limits Proçeffreseirahuirdy yet still face multiple choices in how to proceed ?

- Not a search for an absolute truth rather a tool for making betterinformed decisions.

Domain of possible solutions to the question at hand


## Trust your intuition \&nehooseds that <br> eliminate dead end solutions

## Basic Skills English Course Sequence



The grade received by students in English 826

Success Rate of those same
students in English 836


## Basic Skills English Course Sequence

Two Levels
below
Transfer



The grade received by students in English 826


Success Rate of those same
students in English 836


Years to Completion Profiles


Likelihood of a Successful Outcome for degree \& transfer seeking students for different unit earning pathways

## Likelihood given behavior over one term only

## Units Earned <br> in Following <br> Spring Term

Units Earned in First Fall Term*

Next Fall Term

Successful Outcomes

- Degree
- Certificate
- Transfer Prepared**
- Transfer Directed ***

Likelihood of Success

45\%

18\%

2\%
(1 in 50)

Likelihood of a Successful Outcome for degree \& transfer seeking students for different unit earning pathways

## Likelihood given behavior over two terms

Units Earned in First Fall Term
Pct. of
Cohort


Units Earned
in Following
Spring Term


Units Earned in
Next Fall Term

## Successful Outcomes

- Degree
- Certificate
- Transfer Prepared
- Transfer Directed

Likelihood of Success


Likelihood of a Successful Outcome for degree \& transfer seeking students for different unit earning pathways

## Likelihood given behavior over three terms



- Degree
- Certificate
- Transfer Prepared

Successful Outcomes

## Final thoughts

## Yours, not mine ;)

## Any comments, reactions?

## OACC Symposium

# It has been a 

## pleasure

November 14, 2014

Gregory M Stoup gstoup@4cd.edu
Sr. Dean Contra Costa Community College District Vice President, RP Group of California

## Scholarship on Effective Visuals

- Footnotes \& list of references in appendix
- Many sources but most of this content is derived from a Few:
- Stephen Few (The Effective Visual Communication of Data)
- Edward Tufte (The Visual Display of Quantitative Information)
- Nancy Duarte (Resonate: Visual Stories that Transform Audiences)
- Stanford Institute of Design (the d.school)
- My own wanderings, failures, and experiences.


## Research references

Margaret Dikovitskaya, Visual Culture: The Study of the Visual after the Cultural Turn, The MIT Press (2006).
Stephen Few, Information Dashboard Design: The Effective Visual Communication of Data, O'Reilly Media, Inc. (2009).

Andy Goodman, Storytelling as Best Practice: How stories strengthen your organization, engage your audience, and advance your mission (2003).

Chip Heath \& Dan Heath, Made to Stick: Why Some Ideas Survive and Others Die, Random House; 1 edition (2007).
David H. Jonassen \& Phillip Harris, Handbook of Research on Educational Communications and Technology, Lawrence Erlbaum; 2 edition (2003).

Luc Pauwels, Visual Cultures of Science: Rethinking Representational Practices in Knowledge Building and Science Communication, Dartmouth (2005).

Robert Schank, Tell Me a Story: Narrative and Intelligence, Northwestern University Press (1995)
Annette Simmons, The Story Factor: Inspiration, Influence, and Persuasion Through the Art of Story Telling (2002).
Edward Tufte, Beautiful Evidence, Graphics Press; First Edition (2006).

Edward Tufte, The Visual Display of Quantitative Information, Graphics Press; 2 edition (2001).
Edward Tufte, Visual Explanation: Images and Quantities, Evidence and Narrative, Graphics Press; 4th printing with revisions edition, Graphics Press; 2 edition (1997).

